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THE DESIGN OF LINEAR ALGEBRA LIBRARIES FOR 

HIGH PERFORMANCE COMPUTERS 

Jack J .  Dongarra 

David W. Walker 

Abstract 

This paper discusses the design of linear algebra libraries for high performance comput- 
ers. Particular emphasis is placed on the development of scalable algorithms for MIMD 
distributed memory concurrent computers. A brief description of the EISPACK, LIN- 
PACK, and LAPACK libraries is given, followed by an outline of ScaLAPACK, which is a 
distributed memory version of LAPACK currently under development. The importance of 
block-partitioned algorithms in reducing the frequency of data movement between differ- 
ent levels of hierarchical memory is stressed. The use of such algorithms helps reduce the 
message startup costs on distributed memory concurrent computers. Other key ideas in 
our approach are the use of distributed versions of the Level 3 Basic Linear Algebra Sub- 
programs (BLAS) as computational building blocks, and the use of Basic Linear Algebra 
Communication Subprograms (BLACS) as communication building blocks. Together the 
distributed BLAS and the BLACS can be used to construct higher-level algorithms, and 
hide many details of the parallelism from the application developer. 

The block-cyclic data distribution is described, and adopted as a good way of dis- 

tributing block-partitioned matrices. Block-partitioned versions of the Cholesky and LU 
factorizations are presented, and optimization issues associated with the implementation 
of the LU factorization algorithm on distributed memory concurrent computers are dis- 
cussed, together with its performance on the Intel Delta system. Finally, approaches to 
the design of library interfaces axe reviewed. 

- v -  





1. Introduction 

The increasing availability of advanced-architecture computers is having a very significant effect 

on all spheres of scientific computation, including algorithm research and software development 

in numerical linear algebra. Linear algebra-in particular. the solution of linear systems of 

equations-lies at the heart of most calculations in scientific computing. This chapter dis- 

cusses some of the recent developments in linear algebra designed to exploit these advanced- 

architecture computers. Particular attention will be paid to dense factorization routines, such 

as the Cholesky and LU factorizations, and these will be used as examples to highlight the most 

important factors that must be considered in designing linear algebra software for advanced- 

architecture computers. We use these factorization routines for illustrative purposes not only 

because they are relatively simple, but also because of their importance in several scientific 

and engineering applications that make use of boundary element methods. These applications 

include electromagnetic scattering and computational fluid dynamics problems, as discussed in 

more detail in Section 4.1. 

Much of the work in developing linear algebra software for advanced-architecture computers 

is motivated by the need to solve large problems on the fastest computers available. In this 

chapter, we focus on four basic issues: (1) the motivation for the work; (2) the development of 

standards for use in linear algebra and the building blocks for a library; (3) aspects of algorithm 

design and parallel implementation; and (4) future directions for research. 

For the past 15 years or so, there has been a great deal of activity in the area of algorithms 

and software for solving linear algebra problems. The linear algebra community has long 

recognized the need for help in developing algorithms into software libraries, and several years 

ago, as a community effort, put together a de fac to  standard for identifying basic operations 

required in linear algebra algorithms and software. The hope was that the routines making up 

this standard, known collectively as the Basic Linear Algebra Subprograms (BLAS), would be 

efficiently implemented on advanced-architecture computers by many manufacturers, making 

it possible to reap the portability benefits of having them efficiently implemented 011 a wide 

range of machines. This goal has been largely realized. 

The key insight of our approach to designing linear algebra algorithms for advanced archi- 

tecture computers is that the frequency with which data are moved between different levels of 

the memory hierarchy must be minimized in order to attain high performance. Thus, our main 

algorithmic approach for exploiting both vectorization and parallelism in our implementations 

is the use of block-partitioned algorithms, particularly in conjunction with highly-tuned kernels 

for performing matrix-vector and matrix-matrix operations (the Level 2 and 3 BLAS). In gen- 

eral, the use of block-partitioned algorithms requires data to be moved as blocks, rather than as 

vectors or scalars, 60 that although the total amount of data moved is unchanged, the latency 
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(or startup cost) associated with the movement is greatiy reduced because fewer messages are 

needed to move the data. 

A second key idea is that the performance of an algorithm can be tuned by a user by varying 

the parameters that specify the data layout. On shared memory machines. this is controlled 

by the block size, while on distributed memory machines it is controlled by the block size a n d  

the configuration of the logical process mesh. as described in more detail in Section 5. 

In Section 1, we first give an overview of some of the major software projects aimed at 

solving dense linear algebra problems. Next, we describe the types of machine that benefit 

most from the use of block-partitioned algorithms, and discuss what is meant by high-quality. 

reusable software for advanced-architecture computers. Section 2 discusses the role of the BLAS 

in portability and performance on high-performance computers. We discuss the design of these 

building blocks, and their use in block-partitioned algorithms, in Section 3. Section 4 focuses 

on the design of a block-partitioned algorithm for LU factorization, and Sections 5, 6, and 7 

use this example to illustrate the most important factors in implementing dense linear algebra 

routines on MIMD, distributed memory, concurrent computers. Section 5 deals with the issue 

of mapping the data onto the hierarchical memory of a concurrent computer. The layout of 

an application’s data is crucial in determining the performance and scalability of the parallel 

code. In Sections 6 and 7, details of the parallel implementation and optimization issues are 

discussed. Section 8 presents some future directions for investigation. 

1.1. Dense Linear Algebra Libraries 

Over the past twenty-five years, the first author has been directly involved in the develop- 

ment of several important packages of dense linear algebra software: EISPACK, LINPACK, 

LAPACK, and the BLAS. In addition, both authors are currently involved in the development 

of ScaLAPACK, a scalable version of LAPACK for distributed memory concurrent computers. 

In this section, we give a brief review of these packages-their history, their advantages, and 

their limitations on high-performance computers. 

1.1.1. EISPACK 

EISPACK is a collection of Fortran subroutines that compute the eigenvalues and eigenvectors 

of nine classes of matrices: complex general, complex Hermitian, real general, real symmetric, 

real symmetric banded, real symmetric tridiagonal, special real tridiagonal, generalized real, and 

generalized real symmetric matrices. In addition, two routines are included that use singular 

value decomposition to  solve certain least-squares problems. 

EISPACK is primarily based 011 a collection of Algol procedures developed in the 1960s 

and collected by J .  H. Wilkinson and C. Reinsch in a volume entitled Linear Algebra in the 
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Handbook for Automatic Compvtatron [57] series. This volume was not designed to cover every 

possible method of solution: rather, algorithms were chosen on the basis of their generality, 

elegance, accuracy, speed, or economy of storage. 

Since the release of EJSPACK in 1972, over ten thousand copies of the collection have been 

distributed worldwide. 

1.1.2. LINPACK 

LINPACK is a collection of Fortran subroutines that analyze and solve linear equations and 

linear least-squares problems. The package solves linear systems whose matrices are general, 

banded, symmetric indefinite, symmetric positive definite, triangular, and tridiagonal square. 

In addition, the package computes the QR and singular value decompositions of rectangular 

matrices and applies them to least-squares problems. 

LINPACK is organized around four matrix factorizations: LU factorization, pivoted Cholesky 

factorization, QR factorization, and singular value decomposition. The term LU factorization 

is used here in a very general sense to mean the factorization of a square matrix into a lower 

triangular part and an upper triangular part, perhaps with pivoting. These factorizations will 

be treated at  greater length later, when the actual LINPACK subroutines are discussed. But 

first a digression on organization and factors influencing LINPACK’s efficiency is necessary. 

LINPACK uses column-oriented algorithms to increase efficiency by preserving locality of 

reference. This means that if a program references an item in a particular block, the next 

reference is likely to be in the same block. By column orientation we mean that the LINPACK 

codes always reference arrays down columns, not across rows. This works because Fortran 

stores arrays in column major order. Thus, as one proceeds down a column of an array, the 

memory references proceed sequentially in memory. On the other hand, as one proceeds across 

a row, the memory references jump across memory, the length of the jump being proportional 

to the length of a column. The effects of column orientation are quite dramatic: on systems 

with virtual or cache memories, the LINPACK codes will significantly outperform codes that 

are not column oriented. We note, however, that textbook examples of matrix algorithms are 

seldom column oriented. 

Another important factor influencing the efficiency of LINPACK is the use of the Level 1 

BLAS; there are three effects. 

First, the overhead entailed in calling the BLAS reduces the efficiency of the code. This 

reduction is negligible for large matrices, but, it can be quite significant for small matrices. The 

matrix size at  which it becomes unimportant varies from system to system; for square matrices 

it is typically between n = 25 and n = 100. If this seems like an unacceptably large overhead, 

remember that on many modern systems the solution of a system of order 25 or less is itself a 
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negligible calculation. Konetheless, it cannot be denied that a person whose programs depend 

critically on solving small matrix problems in inner loops will be better off with ULAS-less 

versions of the LINPACK codes. Fortunately, the BLAS can be removed from the smaller, 

more frequently used program in a short editing session. 

Second. the HLAS improve the efficiency of programs when they are run on nonoptimizirig 

compilers. This is because doubly subscripted array references in the inner loop of the algorithm 

are replaced by singly subscripted array references in the appropriate BLAS. The effect can be 

seen for matrices of quite small order, and for large orders the savings are quite significant. 

Finally, improved efficiency can be achieved by coding a set of BLAS [17] to take advantage 

of the special features of the computers on which LINPACK is being run. For most computers, 

this simply means producing machine-language versions. However, the code can also take 

advantage of more exotic architectural features, such as vector operations. 

Further details about the BLAS are presented in Section 2. 

1.1.3. LAPACK 

LAPACK [14] provides routines for solving systems of simultaneous linear equations, least- 

squares solutions of linear systems of equations, eigenvalue problems, and singular value prob- 

lems. The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) 

are also provided, as are related computations such as reordering of the Schur factorizations 

and estimating condition numbers. Dense and banded matrices are handled, but not general 

sparse matrices. In all areas, similar functionality is provided for real and complex matrices, 

in both single and double precision. 

The original goal of the LAPACK project was to make the widely used EISPACK and 

LINPACK libraries run efficiently on shared-memory vector and parallel processors. On these 

machines, LINPACK and EISPACK are inefficient because their memory access patterns dis- 

regard the multilayered memory hierarchies of the machines, thereby spending too much time 

moving data instead of doing useful floating-point operations. LAPACK addresses this problem 

by reorganizing the algorithms to use block matrix operations, such as matrix multiplication, 

in the innermost loops [3,14]. These block operations can be optimized for each architecture to 

account for the memory hierarchy [2], and so provide a transportable way to achieve high effi- 

ciency on diverse modern machines. Here we use the term “transportable” instead of “portable” 

because, for fastest possible performance, LAPACK requires that highly optimized block matrix 

operations be already implemented on each machine. In other words, the correctness of the 

code is portable, but high performance is not-if we limit ourselves to a single Fortran source 

code. 

LAPACK can be regarded as a successor to LINPACK and EISPACK. It has virtually all the 
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capabilities of these two packages and mucli more besides. LAPACK improves on LINPACE; 

and EISPACK in four main respects: speed, accuracy, robustness and functionality. V’hile 

LIWPACE; and EISPACK are based on the vector operation kernels of the Level 1 BLAS, 

LAPACK was designed at the outset to exploit the Level 3 BLAS -a set of specifications 

for Fortran subprograms that do various types of matrix multiplication and the solution of 

triangular systems with multiple right-hand sides. Because of the coarse granularity of the 

Level 3 BLAS operations, their use tends to promote high efficiency on many high-performance 

computers, particularly if specially coded implementations are provided by the manufacturer. 

1.1.4. ScaLAPACK 

The ScaLAPACK software library, scheduled for completion by the end of 1994, will extend 

the LAPACK library to run scalably on MIMD, distributed memory, concurrent computers 

[10,11]. For such machines the memory hierarchy includes the off-processor memory of other 

processors, in addition to the hierarchy of registers, cache, and local memory on each processor. 

Like LAPACK, the ScaLAPACK routines are based on block-partitioned algorithms in order 

to minimize the frequency of data movement between different levels of the memory hierarchy. 

The fundamental building blocks of the ScaLAPACK library are distributed memory versions of 

the Level 2 and Level 3 BLAS, and a set of Basic Linear Algebra Communication Subprograms 

(BLACS) [16,26} for communication tasks that arise frequently in parallel linear algebra com- 

putations. In the ScaLAPACK routines, all interprocessor communication occurs within the 

distributed BLAS and the BLACS, so the source code of the top software layer of ScaLAPACK 

looks very similar t o  that of LAPACK. 

We envisage a number of user interfaces to ScaLAPACK. Initially, the interface will be 

similar to that of LAPACK, with some additional arguments passed to each routine to specify 

the data layout. Once this is in place, we intend to modify the interface so the arguments t o  each 

ScaLAPACK routine are the same as in LAPACK. This will require information about the data 

distribution of each matrix and vector to be hidden from the user. This may be done by means 

of a ScaLAPACK initialization routine. This interface will be fully compatible with LAPACK. 

Provided “dummy” versions of the ScaLAPACK initialization routine and the BLACS are added 

to  LAPACK, there will be no distinction between LAPACK and ScaLAPACK at the application 

level, though each will link to different versions of the BLAS and BLACS. Following on from 

this, we will experiment with object-based interfaces for LAPACK and ScaLAPACK, with the 

goal of developing interfaces compatible with Fortran 90 [lo] and C++ [24]. 
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1.2. Target Archi tectures  

The EISPACK and LITPACK software libraries were designed for supercomputers used in the 

1970s and early 1980s. such as the CDC-7600, Cyber 205, and Cray-1. These machines featured 

multiple functional units pipelined for good performance [43]. The CDC-7600 was basically a 

high-performance scalar computer, while the Cyber 205 and Cray-1 were early vector computers. 

The development of LAPACK in the late 1980s was intended to make the EISPACK and 

LINPACK libraries run efficiently on shared memory, vector supercomputers. The ScaLAPACK 

software library will extend the use of LAPACK to distributed memory concurrent supercom- 

puters. The development of ScaLAPACK began in 1991 and is expected to be completed by 

the end of 1994. 

The underlying concept of both the LAPACK and ScaLAPACK libraries is the use of 

block-partitioned algorithms to minimize data movement between different levels in hierarchical 

memory. Thus, the ideas discussed in this chapter for developing a library for dense linear 

algebra computations are applicable to any computer with a hierarchical memory that (1) 

imposes a sufficiently large startup cost on the movement of data between different levels 

in the hierarchy, and for which (2) the cost of a context switch is too great to make fine 

grain size multithreading worthwhile. Our target machines are, therefore, medium and large 

grain size advanced-architecture computers. These include “traditional” shared memory, vector 

supercomputers, such as the Cray Y-MP and C90, and MIMD distributed memory concurrent 

supercomputers, such as the Intel Paragon, and Thinking Machines’ CM-5, and the more 

recently announced IBM SP1 and Cray T3D concurrent systems. Since these machines have 

only very recently become available, most of the ongoing development of the ScaLAPACK 

library is being done on a 128-node Intel iPSC/860 hypercube and on the 520-node Intel Delta 

system. 

The Intel Paragon supercomputer can have up to 2000 nodes, each consisting of an i860 

processor and a communications processor. The nodes each have at least 16 Mbytes of memory, 

and are connected by a high-speed network with the topology of a two-dimensional mesh. The 

CM-5 from Thinking Machines Corporation [53] supports both SIMD and MIMD programming 

models, and may have up to 16k processors, though the largest CM-5 currently installed has 

1024 processors. Each CM-5 node is a Sparc processor and up to 4 associated vector processors. 

Point-to-point communication between nodes is supported by a data network with the topology 

of a “fat tree” [46]. Global communication operations, such as synchronization and reduction, 

are supported by a separate control network. The IBM SP1 system is based on the same 

RISC chip used in the IBM Rs/SOOO workstations and uses a multistage switch to connect 

processors. The Cray T3D uses the Alpha chip from Digital Equipment Corporation, and 

connects the processors in a three-dimensional torus. 



Future advances in compiler and hardware technologies in the mid to late 1990s are expected 

to make multithreading a viable approach for masking communication costs. Sincr thc blocks 

in a block-partitioned algorithm can be regarded as separate threads, our approach will still be 

applicable on machines that exploit medium and coarse grain size multithreading. 

1.3. High-Quality, Reusable, Mathematical Software 

In developing a library of high-quality subroutines for dense linear algebra computations the 

design goals fall into three broad classes: 

0 performance 

a ease-of-use 

0 range-of-use 

1.3.1. Performance 

Two important performance metrics are concurrent efleiency and scalability. We seek good 

performance characteristics in our algorithms by eliminating, as much as possible, overhead 

due to  load imbalance, data movement, and algorithm restructuring. The way the data are 

distributed (or decompwed) over the memory hierarchy of a computer is of fundamental im- 

portance to these factors. Concurrent efficiency, c, is defined as the concurrent speedup per 

processor [32], where the concurrent speedup is the execution time, Tseq, for the best sequential 

dgorithm running on one processor of the concurrent computer, divided by the execution time, 

TI of the parallei algorithm running on Np processors. When direct methods are used, as in 

LU factorization, the concurrent efficiency depends on the problem size and the number of 

processors, so on a given parallel computer and for a fixed number of processors, the running 

time should not vary greatly for problems of the same size. Thus, we may write, 

where N represents the problem size. In dense linear algebra computations, the execution 

time is usually dominated by the floating-point operation count, so the concurrent efficiency is 

related t o  the performance, G, measured in floating-point operations per second by, 

(2) NP G(N,  NP) = - Np) 
tcaic 

where tcdc is the time for one floating-point operation. For iterative routines, such as eigen- 

solvers, the number of iterations, and hence the execution time, depends not only on the problem 

size, but also on other characteristics of the input data, such as condition number. A parallel 
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algorithm is said to be scalable [3T] if the concurrent efficiency depends on the problem size 

and number of processors only through their ratio. This ratio is simply the problem size per 

processor, often referred to as the granularity. Thus, for a scalable algorithm, the concurrent 

efficiency is constant as the number of processors increases while keeping the granularity fixed. 

Alternatively, Eq. 2 shows that this is equivalent to saying that, for a scalable algorithm, the 

performance depends linearly on the number of processors for fixed granularit,y. 

1.3.2. Ease-Of-Use 

Ease-of-use is concerned with factors such as portability and the user interface to the library. 

Portability, in its most inclusive sense, means that the code is written in a standard language, 

such as Fortran, and that the source code can be compiled on an arbitrary machine to produce 

a program that will run correctly. We call this the “mail-order software” model of portability, 

since it reflects the model used by software servers such as nellib [20]. This notion of portability 

is quite demanding. It requires that all relevant properties of the computer’s arithmetic and 

architecture be discovered at runtime within the confines of a Fortran code. For example, if 

it is important to know the overflow threshold for scaling purposes, it must be determined 

at runtime without overflowing, since overflow is generally fatal. Such demands have resulted 

in quite large and sophisticated programs [28,44] which must be modified frequently to deal 

with new architectures and software releases. This “mail-order” notion of software portability 

also means that codes generally must be written for the worst possible machine expected to 

be used, thereby often degrading performance on all others. Ease-of-use is also enhanced if 

implementation details are largely hidden from the user, for example, through the use of an 

object-based interface to the library [24]. 

1.3.3. Range-Of-Use 

Range-of-use may be gauged by how numerically stable the algorithms are over a range of input 

problems, and the range of data structures the library will support. For example, LINPACK 

and EISPACK deal with dense matrices stored in a rectangular array, packed matrices where 

only the upper or lower half of a symmetric matrix is stored, and banded matrices where only 

the nonzero bands are stored. In addition, some special formats such as Householder vectors 

are used internally to represent orthogonal matrices. There are also sparse matrices, which may 

be stored in many different ways; but in this paper we focus on dense and banded matrices, 

the mathematical types addressed by LINPACK, EISPACK, and LAPACK. 

2. The BLAS as the Key to Portability 

At least three factors affect the performance of portable Fortran code 
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1. Vectorization. Designing vectorizable algorithms in linear algebra is usually straight- 

forward. Indeed, for many computations there are several variants, all vectorizable, but 

with different characteristics in performance (see, for example, [15]). Linear algebra algo- 

rithms can approach the peak performance of many machines-principally becausr peak 

performance depends on some form of chaining of vector addition and multiplication 01)- 

erations, and this is just what the algorithnls require. However, when the algorithms are 

realized in straightforward Fortran 77 code, the performance may fall well short of the 

expected level, usually because vectorizing Fortran compilers fail to minimize the number 

of memory references-that is, the number of vector load and store operations. 

2. Data movement. What often limits the actual performance of a vector, or scalar, 

floating-point unit is the rate of transfer of data between different levels of memory in 

the machine. Examples include the transfer of vector operands in and out of vector 

registers, the transfer of scalar operands in and out of a high-speed scalar processor, the 

movement of data between main memory and a high-speed cache or local memory, paging 

between actual memory and disk storage in a virtual memory system, and interprocessor 

communication on a distributed memory concurrent computer. 

3. Parallelism. The nested loop structure of most linear algebra algorithms offers con- 

siderable scope for loop-based parallelism. This is the principal type of parallelism that 

LAPACK and ScaLAPACK presently aim to exploit. On shared memory concurrent com- 

puters, this type of parallelism can sometimes be generated automatically by a compiler, 

but often requires the insertion of compiler directives. On distributed memory concur- 

rent computers, data must be moved between processors. This is usually done by explicit 

calls to message passing routines, although parallel language extensions such as Coherent 

Parallel C [31] and Split-C I131 do the message passing implicitly. 

The question arises, “How can we achieve sufficient control over these three factors to obtain 

the levels of performance that machines can offer?’’ The answer is through use of the BLAS. 

There are now three levels of BLAS: 

Level 1 BLAS [45]: for vector operations: such as y +- Q X  + y 

Level 2 BLAS [IS): for matrix-vector operations, such as y +- aAz + By 

Level 3 BLAS 117’1: for matrix-matrix operations, such as C +- aAB + PC. 
Here, A, B and C are matrices, x and y are vectors, and a and /3 are scalars. 

The Level 1 BLAS are used in LAPACK, but for convenience rather than for performance: 

they perform an insignificant fraction of the computation, and they cannot achieve high effi- 

ciency on most modern supercomputers. 
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Level 2: 2 +- U r  
Level 3: R +- 0-B 

I 293 
I 310 

Table 1: Speed (Megaflops) of Level 2 and Level 3 BLAS Operations on a CRAY \*-hlP. All 
matrices are of order 500: I’ is upper triangular 

1 h’uniber of processors: I 11 2 1  4 1  8 1  

544 I 898 1613 
620 I 1240 2425 

Level 2: y-cxaAz++y I 311 I 611 I 1197 I 2285 
Level 3: C - ai lB  + 4C 1 312 [ 623 1 1247 I 2425 

Level 2: 2 + U - l t  1 272 I 374 I 479 1 584 
Level 3: B + U-’B I 309 I 618 I 1235 I 2398 

The Level 2 BLAS can achieve near-peak performance on many vector processors, such as a 

single processor of a CRAY X-MP or Y-MP, or Convex C-2 machine. However, on other vector 

processors such as a CRAY-2 or an IBM 3090 VF, the performance of the Level 2 BLAS i s  

limited by the rate of data movement between different levels of memory. 

The Level 3 BLAS overcome this limitation. This third level of BLAS performs 0(n3) 

floating-point operations on O(n2)  data, whereas the Level 2 BLAS perform only O(n2) op- 

erations on 0(n2) data. The Level 3 BLAS also allow us to exploit parallelism in a way that 

i s  transparent to the software that calls them. While the Level 2 BLAS offer some scope for 

exploiting parallelism, greater scope is provided by the Level 3 BLAS, as Table 1 illustrates. 

3. Block Algorithms and Their Derivation 

It is comparatively straightforward to recode many of the algorithms in LINPACK and EIS- 

PACK so that they call Level 2 BLAS. Indeed, in the simplest cases the same floating-point 

operations are done, possibly even in the same order: it is just a matter of reorganizing the 

software. To illustrate this point, we consider the Cholesky factorization algorithm used in the 

LINPACK routine SPOFA, which factorizes a symmetric positive definite matrix as A = U T U .  

We consider Cholesky factorization because the: algorithm is simple, and no pivoting is required. 

In Section 4 we shall consider the slightly more complicated example of LU factorization. 

Suppose that after j - 1 steps the block A00 in the upper lefthand corner of A has been 

factored as A00 = U& UOO. The next row and column of the factorization can then be computed 

by writing A = UTU as 

where bj , c, , v, , and w, are column vectors of length j - 1, and aj, and ujj are scalars. Equating 
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coefficients of the j t h  column, we obtain 

Since Uoo has already been computed, we can compute vj and u j j  from the equations 

The body of the code of the LINPACK routine SPOFA that implements the above method 

is shown in Figure 1. The same computation recoded in “LAPACK-style” to use the Level 2 

BLAS routine STRSV (which solves a triangular system of equations) is shown in Figure 2. 

The call to STMV has replaced the loop over K which made several calls to the Level 1 BLAS 

routine SDOT. (For reasons given beiow, this is not the actual code used in LAPACK - hence 

the term “LAPACK-style” .) 
This change by itself is sufficient to  result in large gains in performance on a number of 

machines-for example, from 72 to  251 megaflops for a matrix of order 500 on one processor 

of a CRAY Y-MP. Since this is 81% of the peak speed of matrix-matrix multiplication on this 

processor, we cannot hope to do very much better by using Level 3 BLAS. 

We can, however, restructure the algorithm at a deeper level to  exploit the faster speed of the 

Level 3 BLAS. This restructuring involves recasting the algorithm as a block algorithm-that 

is, an algorithm that operates on blocks or submatrices of the original matrix. 

3.1. Deriving a Block Algori thm 

To derive a block form of Cholesky factorization, we partition the matrices as shown in Figure 

4, in which the diagonal blocks of A and U are square, but of differing sizes. We assume that 

the first block has already been factored as Aoo = U&Uoo, and that we now want to determine 

the second block column of U consisting of the blocks Uol and U ~ I .  Equating submatrices in 

the second block of columns, we obtain 

Hence, since Uoo has already been computed, we can compute Uol as the solution to the equation 
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IBM 3090 VF, 
1 proc. 

24 
49 
50 

j-variant: LINPACK 23 
j-variant: using Level 2 BLAS ~ 

j-variant: using Level 3 BLAS ~ 

i-variant: using Level 3 BLAS 1 

CRAE- Y-MP, CRAJ' Y-&lP. I 
1 proc. 8 proc. ' 

72 72 I 

287 1225 ~ 

290 1414 

251 378 ~ 

by a call to the Level 3 BLAS routine STRSM; and then we can compute U11 from 

This involves first updating the symmetric submatrix All  by a call to the Level 3 BLAS 

routine SSYRK, and then computing its Cholesky factorization. Since Fortran does not allow 

recursion, a separate routine must be called (using Level 2 BLAS rather than Level 3),  named 

SPOTF2 in Figure 3. In this way, successive blocks of columns of U are computed. The 

LAPACK-style code for the block algorithm is shown in Figure 3. This code runs at 49 megaflops 

on an IBM 3090, more than double the speed of the LINPACK code. On a GRAY Y-MP, the 

use of Level 3 BLAS squeezes a little more performance out of one processor, but makes a large 

improvement when using all 8 processors. 

But that is not the end of the story, and the code given above is not the code actually used 

in the LAPACK routine SPOTRF. We mentioned earlier that for many linear algebra computa- 

tions there are several algorithmic variants, often referred to as i-, j-, and k-variants, according 

to a convention introduced in [15] and used in [36]. The same is true of the corresponding block 

algorithms. 

It turns out that the j-variant chosen for LINPACK, and used in the above examples, is 

not the fastest on many machines, because it performs most of the work in solving triangular 

systems of equations, which can be significantly slower than matrix-matrix multiplication. The 

variant actually used in LAPACK is the i-variant, which relies on matrix-matrix multiplication 

for most of the work. 

Table 2 summarizes the results. 

3.2. Examples of Block Algorithms in LAPACK 

Having discussed in detail the derivation of one particular block algorithm, we now describe 

examples of the performance achieved with two well-known block algorithms: LU and Cholesky 

factorizations. No extra floating-point operations nor extra working storage are required for 

either of these simple block algorithms. (See Gallivan et al. [33] and Dongarra et al. [19] for 
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info = j + 1 i do s j = = O.OeO O s  n-i 
jml = j 
if (jml .ge. 1) then 
do k = 0, jml - 1 
t = a(k, j) - sdot  (k,a(O ,k) , l,a(O, j) ,l) 
t = t/a(k.k) 
a(k,j) = t 
s = s t t*t 

end do 
end if 
s = a(j,j) - s 
if (s .le. O.Oe0) go to 40 
a(j,j) = sqrt(s) 
end do 

Figure 1: The body of the LINPACK routine SPOFA for Cholesky factorization. 

do j = 0, n - I 
call strsv(  ‘upper’, ’transpose), ’non-unit’, j, a, Ida, a(O,j), 1 ) 
s = a(j,j) - sdot( j, a(O,j>, 1, a(O,j), 1 1 
if ( t3 . l e .  zero ) go to 20 
a(j,j) = s q r t (  s 1 

end do 

Figure 2: The body of the “LAPACK-style” routine SPOFA for Cholesky factorization. 

do j = 0, n-1, nb 
jb = min( nb, n-j 1 
call strsm( ’left’, yuppery, ’transpose’, ’non-unit’, j ,  jb, one, 

call ssyrh( ‘upper’, ytransposey, jb, j. -one, a(O,j), Ida, one, 

call spotf2(  ’upper’, jb, a ( j , j ) ,  Ida, in fo  ) 
i f (  in fo  .ne. O ) go to 20 

a, Ida, a(O,j), Ida ) 

a(j.j), Ida 1 

end do 

Figure 3: The body of the “LAPACK-style’’ routine SPOFA for block Cholesky factorization. 
In this code fragment, nb denotes the width of the blocks. 
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Figure 4: Partitioning of A ,  U T ,  and U into blocks. It is assumed that the first block has 
already been factored as A00 = U&Uoo, and we next want to determine the block column 
consisting of Uol and U11. Note that the diagonal blocks of A and U are square matrices. 

Table 3: Speed (Megaflops) of SGETRF/DGETRF for Square Matrices of Order n 

1 Machine I No. of I Block 11 Values of n 

IBM RISC/6000-530 
Alliant FX/8 
IBM 3090J VF 
Convex C-240 
CRAY Y-MP 
CRAY-2 
Siemens/Fujitsu VP 400-EX 
NEC SX2 
CRAY Y-MP 

processors 
1 
8 
1 
4 
1 
1 
1 
1 
8 

16 
64 
64 
1 

64 
64 
1 

64 - 

- 
300 
29 
32 
52 
82 

254 
292 
222 
412 
920 

- 

- 

112 

surveys of algorithms for dense linear algebra on high-performance computers.) 

Table 3 illustrates the speed of the LAPACK routine for LU factorization of a real matrix, 

SGETRF in single precision on CRAY machines, and DGETRF in double precision on all other 

machines. Thus, 64bi t  floating-point arithmetic is used on all machines tested. A block size of 

1 means that the unblocked algorithm is used, since it is faster than - or at least as fast as - a 

block algorithm. 

LAPACK is designed to give high efficiency on vector processors, high-performance “su- 

perscalar” workstations, and shared memory multiprocessors. LAPACK in its present form is 

less likely to give good performance on other types of parallel architectures (for example, mas- 

sively parallel SIMD machines, or MIMD distributed memory machines), but the ScaLAPACK 

project, described in Section 1.1.4, is intended to adapt LAPACK to these new architectures. 

LAPACK can also be used satisfactorily on all types of scalar machines (PCs, workstations, 

mainframes). 

Table 4 gives similar results for Cholesky factorization, extending the results given in Table 2. 
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Table 4: Speed (hlegafiops) of SPOTRF/DPOTRF for Matrices of Order n. Here T!PLO = 
‘U’, so the factorization is of the form A = TiTCJ 

I processors 
IBM RISC/6000-530 1 
Alliant FX/8 8 
IBM 30905 VF 1 
Convex C-240 4 
CRAY Y-MP 1 
CRAY-2 1 

NEC SX2 1 
CRAY Y-MP 8 

Siernens/Fujitsu VI‘ 400-EX 1 

1 Machine 1 KO. of 1 Block 11 Values of n 
size 100 
32 21 
16 10 
48 26 
64 32 
1 126 

64 109 
1 33 
1 135 

32 146 

103 

819 

LAPACK, like LINPACK, provides LU and Cholesky factorizations of band matrices. The 

LINPACK algorithms can easily be restructured to use Level 2 BLAS, though restructuring 

has little effect on performance for matrices of very narrow bandwidth. It is also possible to 

use Level 3 BLAS, at the price of doing some extra work with zero elements outside the band 

[22]. This process becomes worthwhile for large matrices and semi-bandwidth greater than 100 

or so. 

4. LU Factorization 

In this section, we first discuss the uses of dense LU factorization in several fields. We next 

develop a block-partitioned version of the k, or right-looking, variant of the LU factorization 

algorithm. In subsequent sections, the parallelization of this algorithm is described in detail in 

order to  highlight the issues and considerations that must be taken into account in developing 

an efficient, scalable, and transportable dense linear algebra library for MIMD, distributed 

memory, concurrent computers. 

4.1. Uses of LU Factorization in Science and Engineering 

A major source of large dense linear systems is problems involving the solution of boundary inte- 

gral equations. These are integral equations defined on the boundary of a region of interest. All 

examples of practical interest compute some intermediate quantity on a two-dimensional bound- 

ary and then use this information to compute the final desired quantity in three-dimensional 

space. The price one pays for replacing three dimensions with two is that what started as a 

sparse problem in O(n3) variables is replaced by a dense problem in O(n2).  

Dense systems of linear equations are found in numerous applications, including: 
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e airplane wing design; 

e radar cross-section studies; 

e flow around ships and other off-shore constructions: 

4 diffusion of solid bodies in a liquid: 

4 noise reduction; and 

0 diffusion of light through small particles. 

The electromagnetics community is a major user of dense linear systems solvers. Of par- 

ticular interest to this community is the solution of the secalled radar cross-section problem. 

In this problem, a signal of fixed frequency bounces off an object; the goal is to determine the 

intensity of the reflected signal in all possible directions. The underlying differential equation 

may vary, depending on the specific problem. In the design of stealth aircraft, the principal 

equation is the Helmholtz equation. To solve this equation, researchers use the method of 

moments [38,56]. In the case of fluid flow, the problem often involves solving the Laplace or 

Poisson equation. Here, the boundary integral solution is known as the panel method [40,41], so 

named from the quadrilaterals that discretize and approximate a structure such as an airplane. 

Generally, these methods are called bounda y element methods. 

Use of these methods produces a dense linear system of size O ( N )  by O ( N ) ,  where N is 

the number of boundary points (or panels) being used. It is not unusual to see size 3N by 3 N ,  

because of three physical quantities of interest at every boundary element. 

A typical approach to  solving such systems is to use LU factorization. Each entry of the 

matrix is computed as an interaction of two boundary elements. Often, many integrals must be 

computed. In many instances, the time required to compute the matrix is considerably larger 

than the time for solution. 

Only the builders of stealth technology who are interested in radar cross-sections are con- 

sidering using direct Gaussian elimination methods for solving dense linear systems. These 

systems are always symmetric and complex, but not Hermitian. 

For further information on various methods for solving large dense linear algebra problems 

that arise in computational fluid dynamics, see the report by Alan Edelman [30]. 

4.2. Derivation of a Block Algorithm for LU Factorization 

Suppose the M x N matrix A is partitioned as shown in Figure 5, and we seek a factorization 

A = L U ,  where the partitioning of L and U is also shown in Figure 5. Then we may write, 
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Loo 

LIO 

0 

Ll 1 

Figure 5: Block LU factorization of the partitioned matrix A .  A00 is r x r ,  A01 is r x ( N  - r ) ,  
A10 is ( M  - r )  x r ,  and A11 is ( M  - r )  x ( N  - r ) .  LOO and ,511 are lower triangular matrices 
with 1’s on the main diagonal, and UOO and U11 are upper triangular matrices. 

Liouoo = Aio (4) 

Loouoi = Aoi (5) 

LlOUOl 3- Ll1U11 = All ( 6 )  

where ,400 is r x r ,  A01 is r x ( N  - r ) ,  A10 is ( M  - r )  x r, and At1 is ( M  - r )  x ( N  - r ) .  LOO 

and 1511 are lower triangular matrices with 1s on the main diagonal, and UOO and U11 are upper 

triangular matrices. 

Equations 3 and 4 taken together perform an LU factorization on the first M x r panel of 

A (i.e., ,400 and Alo). Once this is completed, the matrices LOO, LID, and UOO are known, and 

the lower triangular system in Eq. 5 can be solved to give Uol. Finally, we rearrange Eq. 6 as, 

From this equation we see that the problem of finding L11 and Ul1 reduces to finding the LU 

factorization of the ( M  ... r )  x ( N  - r )  matrix Ail .  This can be done by applying the steps 

outlined above to A;, instead of to A. Repeating these steps K times, where 

we obtain the LU factorization of the original M x N matrix A. For an in-place algorithm, A 

is overwritten by L and U - the 1s on the diagonal of L do not need to be stored explicitly. 

Similarly, when A is updated by Eq. 7 this may also be done in place. 

After k of these K steps, the first kr columns of L and the first kr rows of U have been 

evaluated, and matrix A has been updated to the form shown in Figure 6, in which panel B is 

(M - k r )  x r and C is r x ( N  - (k - 1)r). Step k + 1 then proceeds as follows, 
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p ......-....-............ ,................ icI 

Figure 6: Stage t + 1 of the block LU factorization algorithm showing how the panels B and C ,  
and the trailing submatrix E are updated. The trapezoidal submatrices L and U have already 
been factored in previous steps. L has kr columns, and U has t r  rows. In the step shown 
another r columns of L and r rows of U are evaluated. 

1. factor B to form the next panel of L ,  performing partial pivoting over rows if necessary 

(see Figure 14). This evaluates the matrices L O ,  L1, and Uo in Figure 6. 

2. solve the triangular system LoUl = C to get the next row of blocks of U .  

3. do a rank-r update on the trailing submatrix E ,  replacing it with E' = E - L I U ~ .  

The LAPACK implementation of this form of LU factorization uses the Level 3 BLAS 

routines xTRSM and xGEMM to perform the triangular solve and rank-r update. We can 

regard the algorithm as acting on matrices that have been partitioned into blocks of r x r 

elements, as shown in Figure 7. 

5. Data Distribution 

The fundamental data object in the LU factorization algorithm presented in Section 4.2 is a 

block-partitioned matrix. In this section, we describe the block-cyclic method for distributing 

such a matrix over a two-dimensional mesh of processes, or template. In general, each process 

has an independent thread of control, and with each process is associated some local memory 

directly accessible only by that process. The assignment of these processes to physical processors 

is a machine-dependent optimization issue, and will be considered later in Section 7. 
An important property of the class of data distribution we shall use is that independent 

decompositions are applied over rows and columns. We shall, therefore, begin by considering 

the distribution of a vector of M data objects over P processes. This can be described by a 

mapping of the global index, m, of a data object to an index pair (p, i ) ,  where p specifies the 
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Figure 7: Block-partitioned matrix A. Each block A,,, consists of r x r matrix elements 

process to which the data object is assigned, and i specifies the location in the local memory 

of p at  which it is stored. We shall assume 0 5 m < A4 and 0 5 p < P. 

Two common decompositions are the block and the cyclrc decompositions [55,32]. The block 

decomposition, that is often used when the computational load is distributed homogeneously 

over a regular data structure such as a Cartesian grid, assigns contiguous entries in the global 

vector to the processes in blocks. 

where L = [M/P1.  The cyclic decomposition (also known as the wrapped or scattered decom- 

position) is commonly used to improve load balance when the computational load is distributed 

inhomogeneously over a regular data structure. The cyclic decomposition assigns consecutive 

entries in the global vector to successive different processes, 

Examples of the block and cyclic decompositions are shown in Figure 8. 

The block cyclic decomposition i s  a generalization of the block and cyclic decompositions 

in which blocks of consecutive data objects are distributed cyclically over the processes. In the 

block cyclic decomposition the mapping of the global index, rn, can be expressed as m t-+ (p, b ,  i ) ,  

where p is the process number, b is the block number in process p, and i is the index within 

block b to which rn is mapped. Thus, if the number of data objects in a block is r ,  the block 
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‘ m  0 1 2 3 4 5 6 7 8 9  
p 0 0 0 0 1 1 1 1 2 2  

, 1  0 1 2 3 0 1 2 3 0 1  

m 0 1 2 3 4 5 6 7 8 9 ’  
- p 0 1 2 0 1 2 0 1 2 0 ’  

I 2  

rn 

p 
b 
i 

Figure 9: An example of the block cyclic decomposition of M = 23 data objects over P = 3 
processes for a block size of r = 2. (a) shows the mapping from global index, m, to the triplet 
( p ,  b,  i), and (b) shows the inverse mapping. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2  
0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3  
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0  

cyclic decomposition may be written, 

p 
b 
i 

m 

where T = rP. It should be noted that this reverts to the cyclic decomposition when r = 1, 

with local index i = 0 for all blocks. A block decomposition is recovered when r = L ,  in which 

case there is a single block in each process with block number b = 0. The inverse mapping of 

the triplet ( p ,  b ,  i) to a global index is given by, 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2  
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3  
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0  
0 1 6 7 12 13 18 19 2 3 8 9 14 15 20 21 4 5 10 11 16 17 22 

(12) ( p , b ,  i )  ++ B r  + i = p r  + bT+ i 

where B = p + bP is the global block number. The block cyclic decomposition is one of the 

data distributions supported by High Performance Fortran (HPF) [42] , and has been previously 

used, in one form or another, by several researchers (see [1,4,5,9,23,27,50,52,54] for examples of 

its use). The block cyclic decomposition is illustrated with an example in Figure 9. 

The form of the block cyclic decomposition given by Eq. 11 ensures that the block with 

global index 0 is placed in process 0, the next block is placed in process 1, and so on. However, 

it is sometimes necessary to offset the proccmes relative to  the global block index so that, in 

general, the first block is placed in process pol the next in process po + 1, and so on. We, 

therefore, generalize the block cyclic decomposition by replacing m on the righthand side of 
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Eq. 11 by rn’ = m + rpo to give, 

= (( Lrn m:d “J + P O )  mod P, 1-J , m mod r) . 

Equation 12 may also be generalized to, 

where now the global block number is given by B = ( p  - PO) + bP. It should be noted that in 

processes with p < po,  block 0 is not within the range of the block cyclic mapping and it is, 

therefore, an error to reference it in any way. 

In decomposing an M x N matrix we apply independent block cyclic decompositions in the 

row and column directions. Thus, suppose the matrix rows are distributed with block size r 

and offset po over P processes by the block cyclic mapping p r , p o , p ,  and the matrix columns are 

distributed with block size s and offset qo over Q processes by the block cyclic mapping v ~ , ~ ~ , Q .  

Then the matrix element indexed globally by (m, n) is mapped as follows, 

The decomposition of the matrix can be regarded as the tensor product of the row and column 

decompositions, and we can write, 

The block cyclic matrix decomposition given by Eqs. 15 and 16 distributes blocks of size r x s 

to a mesh of P x Q processes. We shall refer to this mesh as the process template, and refer 

to processes by their position in the template. Equation 16 says that global index (m,n) is 

mapped to  process ( p ,  q) ,  where it is stored in the block at  location ( b ,  d )  in a two-dimensional 

array of blocks. Within this block it is stored at location (i, j). The decomposition is completely 

specified by the parameters r ,  s, PO, 40, P ,  and &. In Figure 10 an example is given of the 

block cyclic decomposition of a 36 x 80 matrix for block size 4 x 5, a process template 3 x 4, 

and a template offset ( p o , q ~ )  = (0,O). Figure 11 shows the same example but for a template 

offset of (1,2). 

The block cyclic decomposition can reproduce most of the data distributions commonly used 

in linear algebra computations on parallel computers. For example, if Q = 1 and r = [M/P1 

the block row decomposition is obtained. Similarly, P = 1 and s = [ N / Q l  gives a block column 
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decomposition. These decompositions, together with row and column cyclic decompositions. 

are shown in Figure 12. Other commonly used block cyclic matrix decompositions are shown 

in Figure 13. 

6. Parallel Implementation 

In this section we describe the parallel implementation of LU factorization, with partial pivoting 

over rows, for a block-partitioned matrix. The matrix, A ,  to be factored is assumed to have 

a block cyclic decomposition. and at the end of the computation is overwritten by the lower 

and upper triangular factors, L and U .  This implicitly determines the decomposition of L and 

U. Quite a high-level description is given here since the details of the parallel implementation 

involve optimization issues that will be addressed in Section 7. 

The sequential LU factorization algorithm described in Section 4.2 uses square blocks. Al- 

though in the parallel algorithm we could choose to decompose the matrix using nonsquare 

blocks, this would result in a more complicated code, and additional sources of concurrent 

overhead. For LU factorization we, therefore, restrict the decomposition to use only square 

blocks, so that the blocks used to decompose the matrix are the same as those used to partition 

the computation. If the block size is r x r ,  then an M x N matrix consists of Mb x Nb blocks, 

where Ma = [ M / r ]  and Na = [ N / r l .  

As discussed in Section 4.2, LU factorization proceeds in a series of sequential steps indexed 

by k = 0, min (Mb,  Nb)  - 1 ,  in each of which the following three tasks are performed, 

1. factor the kth column of blocks, performing pivoting if necessary. This evaluates the 

matrices L O ,  L1, and UO in Figure 6. 

2. evaluate the kth block tow of U by solving the lower triangular system LoUl = C 

3. do a rank-r update on the trailing submatrix E ,  replacing it with E' = E - L1U1. 

We now consider the parallel implementation of each of these tasks. The computation in 

the factorization step involves a single column of blocks, and these lie in a single column of 

the process template. In the kth factorization step, each of the r columns in block column 

k is processed in turn. Consider the ith column in block column k. The pivot is selected by 

finding the element with largest absolute value in this column between row kr  + i and the last 

row, inclusive. The elements involved in the pivot search at this stage are shown shaded in 

Figure 14. Having selected the pivot, the value of the pivot and i t s  row are broadcast to all 

other processors. Next, pivoting is performed by exchanging the entire row kr + i with the row 

containing the pivot. We exchange entire rows, rather than just the part to the right of the 

columns already factored, in order to simplify the application of the pivots to the righthand side 

in any subsequent solve phase. Finally, each value in the column below the pivot is divided by 
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(a) Assignment of global block indices, (B, D), to processes, (p, q) .  

B.DI 1 2 R q 

(b) Global blocks, ( B ,  D), in each process, ( P ,  n). 

Figure 10: Block cyclic decomposition of a 36 x 80 matrix with a block size of 4 x 5, onto a 
3 x 4 process template. Each small rectangle represents one matrix block - individual matrix 
elements are not shown. In {a), shading is used to emphasize the process template that is 
periodically stamped over the matrix, and each block is labeled with the process to which it 
is assigned. In {b), each shaded region shows the blocks in one process, and is labeled with 
the corresponding global block indices. In both figures, the black rectangles indicate the blocks 
assigned to process (0,O). 
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(b) Global blocks, ( B ,  D), in each process, ( p ,  q) .  

Figure 11: The same matrix decomposition as shown in Figure 10, but for a template offset of 
( p 0 , 4 0 )  = (1,2).  Dashed entries in (b) indicate that the block does not contain any data. In 
both figures, the black rectangles indicate the blocks assigned to process (0,O). 
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l,o l ,o 
l ,o 1.0 

l,o l,o 
2,o 2,o 
2.0 2,o 

~ 2,o 2,o 

(a) r = 3, 6 = 10, P = 4, Q = 1 

(c) r = 10, s = 3, P = 1, Q = 4 

1.01 1 ,0~1,0~1,0~1,0~1 ,o 

(b) r = 1, s = 10, P = 4, Q = 1 

Figure 12: These 4 figures show different ways of decomposing a 10 x 10 matrix. Each cell 
represents a matrix element, and is labeled by the position, ( p , q ) ,  in the template of the 
process to which it is assigned. To emphasize the pattern of decomposition, the matrix entries 
assigned to the process in the first row and column of the template are shown shaded, and each 
separate shaded region represents a matrix block. Figures (a) and (b) show block and cyclic 
row-oriented decompositions, respectively, for 4 nodes. In figures (c) and (d) the corresponding 
column-oriented decompositions are shown. Below each figure we give the values of r ,  s, P ,  
and Q corresponding to the decomposition. In all cases po = QO = 0. 
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(a) r = 3, s = 3, P = 4, Q = 4 

1,2 1,3 1,0 1,l 

2,2 2,3 2,O 2,l 

1,2 1,3 1,0 1,l 

2,2 2,3 2,O 2,l 

3,2 3,3 3,O 3,l 

1,2 1.3 1,0 1 , l  

2,2 2,3 2,O 2,l 

(d) r =  1, s =  1, P = 4 ,  Q = 4  

Figure 13: These 4 figures show different ways of decomposing a 10 x 10 matrix over 16 
processes arranged as a 4 x 4 template. Below each figure we give the values of r ,  s, P ,  and Q 
corresponding to the decomposition. In all cases po = qo = 0. 
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row 
kr+i 

pivot 
row 

column 
kr+i 

Figure 14: This figure shows pivoting for step i of the kth stage of LU factorization. The 
element with largest absolute value in the gray shaded part of column kr + i is found, and the 
row containing it is exchanged with row k r  + i .  If the rows exchanged lie in different processes, 
communication may be necessary. 

the pivot. If a cyclic column decomposition is used, Like that shown in Figure 12(d), only one 

processor is involved in the factorization of the block column, and no communication is necessary 

between the processes. However, in general P processes are involved, and communication is 

necessary in selecting the pivot, and exchanging the pivot rows. 

The solution of the lower triangular system LoUl = C to evaluate the kth block row of 

U involves a single row of blocks, and these lie in a single row of the process template. If a 

cyclic row decomposition is used, like that shown in Figure 12(b), only one processor is involved 

in the triangular solve, and no communication is necessary between the processes. However, 

in general Q processes are involved, and communication is necessary to broadcast the lower 

triangular matrix, LO, to all processes in the row. Once this has been done, each process in the 

row independently performs a lower triangular solve for the blocks of C that it holds. 

The communication necessary to update the trailing submatrix: at step C takes place in two 

steps. First, each process holding part of L1 broadcasts these blocks to the other processes 

in the same row of the template. This may be done in conjunction with the broadcast of Lo, 
mentioned in the preceding paragraph, so that all of the factored panel is broadcast together. 

Next, each process holding part of U1 broadcasts these blocks to the other processes in the 

same column of the template. Each process can then complete the update of the blocks that it 

holds with no further communication. 

A pseudocode outline of the parallel LU factorization algorithm is given in Figure 15. There 
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- I 

' pcol= qo 
prow= po 
do k= 0,  niin ( k f b ,  n i b )  - 1 

do i= 0 , r -  1 
if ( q  =pcol) find pivot, value and location 
broadcast pivot value and location to all processes 
exchange pivot rows 
if ( q  =pcol) divide column r below diagonal by pivot 

end do 

if ( p  =prow) then 
broadcast LO to all process in same template row 
solve LOU1 = C 

end if 

broadcast L1 to all processes in same template row 
broadcast U1 to all processes in same template column 
update E + E - LlUl 

pcol= (pcol + 1) mod Q 
Prow= (prow + 1) mod P 

end do 

Figure 15: Pseudocode for the basic parallel block-partitioned LU factorization algorithm. This 
code is executed by each process. The first box inside the k loop factors the kth column of 
blocks. The second box solves a lower triangular system to evaluate the kth row of blocks of 
[J ,  and the third box updates the trailing submatrix. The template offset is given by (PO, q o ) ,  
and ( p ,  q )  is position of a process in the template. 

are two points worth noting in Figure 15. First, the triangular solve and update phases operate 

on matrix blocks and may, therefore, be done with parallel versions of the Level 3 BLAS 

(specifically, xTRSM and xGEMM, respectively). The factorization of the column of blocks, 

however, involves a loop over matrix columns. Hence, is it not a block-oriented computation, 

and cannot be performed using the Level 3 BLAS. The second point to note is that most of the 

parallelism in the code comes from updating the trailing submatrix since this is the only phase 

in which all the processes are busy. 

Figure 15 also shows quite clearly where communication is required; namely, in finding 

the pivot, exchanging pivot rows, and performing various types of broadcast. The exact way 

in which these communications are done and interleaved with computation generally has an 

important effect on performance, and will be discussed in more detail in Section 7. 

Figure 15 refers to broadcasting data to all processes in the same row or column of the 

template. This is a common operatiori in parallel linear algebra algorithms, so the idea will 

be described here in a little more detail. Consider, for example, the task of broadcasting the 
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(a) Broadcast along rows. 

(b)  Broadcast along columns. 

Figure 16: Schematic representation of broadcast along rows and columns of a 4 x 6 process 
template. In (a), each shaded process broadcasts to the processes in the same row of the process 
template. In (b), each shaded process broadcasts to the processes in the same column of the 
process template. 

bwer triangular block, LO, to all processes in the same row of the template, as required before 

solving Lou1 = C. If LO is in process (p,q), then it will be broadcast to all processes in row 

p of the process template. As a second example, consider the broadcast of L1 to all processes 

in the same template row, as required before updating the trailing submatrix. This type of 

“rowcast” is shown schematically in Figure 16(a). If L1 is in column p of the template, then 

each process ( p ,  q )  broadcasts its blocks of L1 to the other processes in row p of the template. 

Loosely speaking, we can say that Lo and L1 are broadcast along the rows of the template. 

This type of data movement is the same as that performed by the Fortran 90 routine SPREAD 

[7]. The broadcast of UI to all processes in the same template column is very similar. This 

type of communication is sometimes referred to as a “colcast”, and is shown in Figure 16(b). 
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7. Optimization, Tuning, and Trade-offs 

In this section, we shall examine techniques for optimizing the basic LU factorization code 

presented in Section 4.2. Among the issues to be considered are the assignrnent of processes 

to physical processors, the arrangeme~t of the data in the local memory of each process, the 

trade-off between load imbalance and communication latency, the potential for overlapping 

communication and calculation, and the type of algorithm used to broadcast data. Many of 

these issues are interdependent, and in addition the portability and ease of code maintenance 

and use must be considered. For further details of the optimization of parallel LU factorization 

algorithms for specific concurrent machines, together with timing results, the reader is referred 

to the work of Chu and George [12], Geist and Heath [34], Geist and Romine [35], Van de Velde 

[55], Brent [8], Hendrickson and Womble [39], Lichtenstein and Johnson [47] , and Dongarra 

and ceworkers [ 10,251. 

7.1. Mapping Logical Memory to Physical Memory 

In Section 5, a logical (or virtual) matrix decomposition was described in which the global 

index (m,  n) is mapped to a position, (p, q ) ,  in a logical process template, a position, ( b ,  d ) ,  in 

a logical array of blocks local to the process, and a position, ( i , j ) ,  in a logical array of matrix 

elements local to the block. Thus, the block cyclic decomposition is hierarchical, and attempts 

to represent the hierarchical memory of advanced-architecture computers. Although the parallel 

LU factorization algorithm can be specified solely in terms of this logical hierarchical memory, 

its performance depends on how the logical memory is mapped to physical memory. 

7.1.1. Assignment of Processes to Processors 

Consider, first, the assignment of processes, ( p ,  q ) ,  to physical processors. In general, more than 

one process may be assigned to a processor, so the problem may be overdecomposed. To avoid 

load imbalance the same number of processes should be assigned to each processor as nearly 

as possible. If this condition is satisfied, the assignment of processes to processors can still 

affect performance by influencing the communication overhead. On recent distributed memory 

machines, such as the Intel Delta and CM-5, the time to send a single message between two 

processors is largely independent of their physical location [29,48,49], and hence the assignment 

of processes to processors does not have much direct effect on performance. However, when a 

collective communication task, such as a broadcast, is being done, contention for physical re- 

sources can degrade performance. Thus, the way in which processes are assigned to processors 

can affect performance if some assignments result in differing amounts of contention, Loga- 

rithmic contention-free broadcast algorithms have been developed for processors connected as 

a two-dimensional mesh [6,51], so on such machines process ( p , q )  i s  usually mapped to the 
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processor at position ( p ,  q )  in the mesh of processors. Such an assignment also ensures that the 

multiple one-dimensional broadcasts of L1 and U1 along the rows and columns of the template, 

respectively, do not give rise to contention. 

7.1.2. Layout  of Local Process Memory 

The layout of matrix blocks in the local memory of a process, and the arrangement of matrix 

elements within each block, can also affect performance. Here, tradeoffs among several fac- 

tors need to be taken into account. When communicating matrix blocks, for example in the 

broadcasts of L1 and U1, we would like the data in each block to be contiguous in physical 

memory so there is no need to pack them into a communication buffer before sending them. On 

the other hand, when updating the trailing submatrix, E ,  each process multiplies a column of 

blocks by a row of blocks, to do a rank-r update on the part of E that it contains. If this were 

done as a series of separate block-block matrix multiplications, as shown in Figure 18(a), the 

performance would be poor except for sufficiently large block sizes, r ,  since the vector and/or 

pipeline units on most processors would not be fully utilized, as may be seen in Figure 17 for 

the i860 processor. Instead, we arrange the loops of the computation as shown in Figure 18(b). 

Now, if the data are laid out in physical memory f i s t  by running over the i index and then 

over the d index the inner two Ioops can be merged, so that the length oE the inner loop is 

now rdmax. This generally results in much better vector/pipeline performance. The b and j 

loops in Figure 18(b) can also be merged, giving the algorithm shown in Figure 18(c). This is 

just the outer product form of the multiplication of an rd,, x r by an r x rbmax matrix, and 

would usually be done by a call to the Level 3 BLAS routine xGEMM of which an assembly 

coded sequential version is available on most machines. Note that in Figure 18(c) the order 

of the inner two loops is appropriate for a Fortran implementation - for the G language this 

order should be reversed, and the data should be stored in each process by rows instead of by 

columns. 

We have found in our work on the Intel iPSG/SSO hypercube and the Delta system that 

it is better to  optimize for the sequential matrix multiplication with an (i, d ,  j ,  b )  ordering of 

memory in each process, rather than adopting an (i, j, d ,  b )  ordering to avoid buffer copies when 

communicating blocks. However, there is another reason for doing this. On most distributed 

memory computers the message startup cost is sufficiently large that it is preferable wherever 

possible to send data as one large message rather than as several smaller messages. Thus, 

when communicating L1 and VI the blocks to be broadcast would be amalgamated into a 

single message, which requires a buffer copy. The emerging Message Passing interface (MPI) 

standard [21] provides support for noncontiguous messages, so in the future the need to avoid 

buffer copies will not be of such concern to the application developer. 
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Figure 17: Performance of the assembly-coded Level 3 BLAS matrix multiplication routine 
DGEMM on one i860 processor of the Intel Delta system. Results for square and rectangular 
matrices are shown. Note that the peak performance of about 35 Mflops is attained only for 
matrices whose smallest dimension exceeds 100. Thus, performance is improved if a few large 
matrices are multiplied by each process, rather than many small ones. 

7.2. Tradeoffs between Load Balance and Communication Latency 

We have discussed the mapping of the logical hierarchical memory to physical memory. In addi- 

tion, we have pointed out the importance of maintaining long inner loops to get good sequential 

performance for each process, and the desirability of sending a few large messages rather than 

many smaller ones. We next consider load balance issues. Assuming that equal numbers of 

processes have been assigned to each processor, load imbalance arises in two phases of the par- 

allel LU factorization algorithm; namely, in factoring each column block, which involves only 

P processes, and in solving the lower triangular system to evaluate each row block of U ,  which 

involves only Q processes. If the time for data movement is negligible, the aspect ratio of the 

template that minimizes load imbalance in step t of the algorithm is, 

P - Sequential time to factor column block 

Q 
- -  

Sequential time for triangular solve 

where Ma x Nb is the matrix size in blocks, and r the block size. Thus, the optimal aspect 

ratio of the template should be the same as the aspect ratio of the matrix, i.e., Ma/Nb in 
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do d = Oldmax - 1 
~ do i = 0 , r -  1 

do j = 0, T - 1 
do k = 0, r - 1 

E ( b , d ; i , j )  = E ( b , d ; i , j ) -  L i ( b . d , i , k ) U i ( b , d ; k , j )  
end all do loops 

do k = 0, r - 1 
do b = O,b,, - 1 

d o j = O , r - 1  
dod=O,dm,-1 

do i = 0, r - 1 
E(b, d; i, j )  = E(b, d; i, j )  - h ( b ,  d ;  i, k) Ui(b, d; E ,  j )  

end all do loops 

(b) Intermediate form of algorithm 

(c) Outer product form of algorithm 

Figure 18: Pseudocode for different versions of the rank-r update, E +- E - LIU1, for one 
process. The number of row and column blocks per process is given by b,, and d,,, respec- 
tively; r is the block size. Blocks axe indexed by ( b , d ) ,  and elements within a block by (i, j ) .  
In version (a) the r x r blocks are multiplied one at a time, giving an inner loop of length r .  
(b) shows the loops rearranged before merging the i and d loops, and the j and b loops. This 
ieads to the outer product form of the algoritbm shown in (c) in which the inner loop is now 
of length rdma. 

blocks, or M / N  in elements. If the effect of communication time is included then we must 

take into account the relative times taken to locate and broadcast the pivot information, and 

the time to broadcast the lower triangular matrix, Lo, along a row of the template. For 

both tasks the communication time increases with the number of processes involved, and since 

the communication time associated with the pi. oting is greater than that associated with the 

triangular solve, we would expect the optimum aspect ratio of the template to be less than M / N .  

In fact, for our runs on the Intel Delta system we found an aspect ratio, P/&, of between 1/4 

and 1/8 to be optimal for most problems with square matrices, and that performance depends 

rather weakly on the aspect ratio, particularly for fasge grain sizes. Some typical results are 

shown in Figure 19 for 256 processors, which show a variation of less than 20% in performance 
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Figure 19: Performance of LU factorization on the Intel Delta as a function of square ma- 
trix size for different processor templates containing approximately 256 processors. The best 
performance is for an aspect ratio of 1/4, though the dependence on aspect ratio is rather weak. 

as P/Q varies between 1/16 and 1 for the largest problem. 

The block size, T ,  also affects load balance. Here the tradeoff is between the load imbalance 

that arises as rows and columns of the matrix are eliminated as the algorithm progresses, and 

communication startup costs. The block cyclic decomposition seeks to maintain good load 

balance by cyclically assigning blocks to processes, and the load balance is best if the blocks 

are small. On the other hand, cumulative communication startup costs are less if the block size 

is large since, in this case, fewer messages must be sent (although the total volume of data sent 

is independent of the block size). Thus, there is a block size that optimally balances the load 

imbalance and communication startup costs. 

7.3. Optimality and Pipelining Tradeoffs 

The communication algorithms used also influence performance. In the LU factorization al- 

gorithm, all the communication can be done by moving data along rows and/or columns of 

the process template. This type of communication can be done by passing from one process 

to the next along the row or column. We shall call this a “ring” algorithm, although the ring 
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may, or may not, be closed. An alternative is to use a spanning tree algorithm, of which there 

are several varieties. The complexity of the ring algorithm is linear in the number of pro- 

cesses involved, whereas that of spanning tree algorithms is logarithnllc (for example, see (61). 

Thus, considered in isolation, the spanning tree algorithms are preferable to a ring algorithm. 

However, in a spanning tree algorithm, a process may take part in several of the logarithmic 

steps, and in some implementations these algorithms act as a barrier. In a ring algorithm, each 

process needs to communicate only once, and can then continue to compute, in effect over- 

lapping the communication with computation. An algorithm that interleaves communication 

and calculation in this way is often referred to as a pipelined algorithm. In a pipelined LU 

factorization algorithm with no pivoting, communication and calculation would flow in waves 

across the matrix. Pivoting tends to inhibit this advantage of pipelining. 

In the pseudocode in Figure 15, we do not specify how the pivot information should be 

broadcast. In an optimized implementation, we need to finish with the pivot phase, and the 

triangular solve phase, as soon as possible in order to begin the update phase which is richest in 

parallelism. Thus, i t  is not a good idea to broadcast the pivot information from a single source 

process using a spanning tree algorithm, since this may occupy some of the processes involved 

in the panel factorization for too long. It is important to get the pivot information to the other 

processes in this template column as soon as possible, so the pivot information is first sent to 

these processes which subsequently broadcast it along the template rows to the other processes 

not involved in the panel factorization. In addition, the exchange of the parts of the pivot rows 

lying within the panel is done separately from that of the parts outside the pivot panel. Another 

factor to consider here is when the pivot information should be broadcast along the template 

columns. In Figure 15, the information is broadcast, and rows exchanged, immediately after 

the pivot is found. An alternative is to store up the sequence of r pivots for a panel and to 

broadcast them along the template rows when panel factorization is complete. This defers the 

exchange of pivot rows for the parts outside the panel until the panel factorization has been 

done, as shown in the pseudocode fragment in Figure 20. An advantage of this second approach 

is that only one message is used to send the pivot information for the panel along the template 

rows, instead of r messages. 

In our implementation of LU factorization on the Intel Delta system, we used a spanning 

tree algorithm to locate the pivot and to broadcast it within the column of the process template 

performing the panel factorization. This ensures that pivoting, which involves only P processes, 

is completed as quickly as possible. A ring broadcast is used to pipeline the pivot information 

and the factored panel along the template rows. Finally, after the triangular solve phase has 

completed, a spanning tree broadcast is used to send the newly-formed block row of U along the 

template columns. Results for square matrices from runs on the Intel Delta system are shown 
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if ( q  =pcol) then 
d o i = O , r - 1  

find pivot value and location 
exchange pivot rows lying within panel 
divide column r below diagonal by pivot 

end do 
end if 
broadcast pivot information for r pivots along template rows 
exchange pivot rows lying outside the panel for each of r pivots 

Figure 20: Pseudocode fragment for partial pivoting over rows. This may be regarded as 
replacing the first box inside the k loop in Figure 15. In the above code pivot information is 
first disseminated within the template column doing the panel factorization. The pivoting of 
the parts of the rows lying outside the panel is deferred until the panel factorization has been 
completed. 

in Figure 21. For each curve the results for the best process template configuration are shown. 

Recalling that for a scalable algorithm the performance should depend linearly on the number 

of processors for fixed granularity (see Eq. 2), it is apparent that scalability may be assessed 

by the extent to which isogranularity curves differ from linearity. An isogranularity curve is a 

plot of performance against number of processors for a fixed granularity. The results in Figure 

21 can be used to generate the isogranularity curves shown in Figure 22 which show that on 

the Delta system the LU factorization routine starts to lose scalability when the granularity 

falls below about 0.2 x lo6. This correspoiids to a matrix size of about A4 = 10000 on 512 

processors, or about 13% of the memory available to applications on the Delta, indicating that 

LU factorization scales rather well on the Intel Delta system. 

8. Conclusions and Future Research Directions 

Portability of programs has always been an important consideration. Portability was easy to  

achieve when there was a single architectural paradigm (the serial von Neumann machine) and 

a single programming language for scientific programming (Fortran) embodying that common 

model of computation. Architectural and linguistic diversity have made portability much more 

difficult, but no less important, to attain. Users simply do not wish to invest significant amounts 

of time to create large-scale application codes for each new machine. Our answer is to develop 

portable software libraries that hide machine-specific details. 

8.1. Portability, Scalability, and Standards 

In order t o  be truly portable, parallel software libraries must be standardized. In a paral- 

lel computing environment in which the higher-level routines and/or abstractions are built 
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Figure 21: Performance of LU factorization on the Intel Delta as a function of square matrix size 
for different numbers of processors. For each curve, results are shown for the process template 
configuration that gave the best performance for that number of processors. 

Figure 22: Isogranularity curves in the ( N p ,  G) plane for the LU factorization of square matrices 
on the Intel Delta system. The curves are labeled by the granularity in units of lo6 matrix 
elements per processor. The linearity of the plots for granularities exceeding about 0.2 x lo6 
indicates that the LU factorization algorithm scales well on the Delta. 
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upon lower-level computation and message-passing routines, the benefits of standardization 

are particularly apparent. Furthermore. the definition of computational and message-passing 

standards provides vendors with a clearly defined base set of routines that they can implement 

efficiently. 

From the user’s point of view, portability means that, a s  new machines are developed. they 

are simply added to the network, supplying cycles where they are most appropriate. 

From the mathematical software developer’s point of view, portability may require signif- 

icant effort, Economy in development and maintenance of mathematical software demands 

that such development effort be leveraged over as many different computer systems as possible. 

Given the great diversity of parallel architectures, this type of portability is attainable to only 

a limited degree, but machine dependences can at least be isolated. 

LAPACK is an example of a mathematical software package whose highest-level components 

are portable, while machine dependences are hidden in lower-level modules. Such a hierarchical 

approach is probably the closest one can come to software portability across diverse parallel 

architectures. And the BLAS that are used so heavily in LAPACK provide a portable, efficient, 

and flexible standard for applications programmers. 

Like portability, scalability demands that a program be reasonably effective over a wide 

range of number of processors. The scalability of parallel algorithms, and software libraries 

based on them, over a wide range of architectural designs and numbers of processors will likely 

require that the fundamental granularity of computation be adjustable to suit the particular 

circumstances in which the software may happen to execute. Our approach to this problem 

is block algorithms with adjustable block size. In many cases, however, polyalgorithmsl may 

be required to deal with the full range of architectures and processor multiplicity likely to be 

available in the future. 

Scalable parallel architectures of the future are likely to be based on a distributed memory 

architectural paradigm. In the longer term, progress in hardware development, operating sys- 

tems, languages, compilers, and communications may make it possible for users to view such 

distributed architectures (without significant loss of efficiency) as having a shared memory with 

a global address space. For the near term, however, the distributed nature of the underlying 

hardware will continue to be visible at the programming level; therefore, efficient procedures 

for explicit communication will continue to be necessary. Given this fact, standards for basic 

message passing (send/receive), as well as higher-level communication constructs (global sum- 

mation, broadcast, etc.), become essential to the development of scalable libraries that have 

any degree of portability. In addition to standardizing general communication primitives, it 

lIn a polyalgorithm the actual algorithm used depends on the computing environment and the input data. 
The optimal algorithm in a particular instance is automatically selected at runtime. 
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may also be advantageous to establish standards for problem-specific constructs in corrimonly 

occurring areas such as linear algebra. 

The BLACS (Basic Linear Algebra Communication Subprograms) [16,26] is a package that 

provides the same ease of use and portability for MIMD message-passing linear algebra com- 

munication that the BLAS [17,18.45] provide for linear algebra computation. Therefore, we 

recommend that future software for dense linear algebra on MIMD platforms consist of calls to 

the BLAS for computation and calls to the BLACS for communication. Since both packages 

will have been optimized for a particular platform, good performance should be achieved with 

relatively little effort. Also, since both packages will be available on a wide variety of machines, 

code modifications required to change platforms should be minimal. 

8.2. Alternative Approaches 

Traditionally, large, general-purpose mathematical software libraries have required users to 

write their own programs that call library routines to solve specific subproblems that arise 

during a computation. Adapted to a shared-memory parallel environment, this conventional 

interface still offers some potential for hiding underlying complexity. For example, the LAPACK 

project incorporates parallelism in the Level 3 BLAS, where it is not directly visible to the user. 

But when going from shared-memory systems to the more readily scalable distributed mem- 

ory systems, the complexity of the distributed data structures required is more difficult to hide 

from the user. Not only must the problem decomposition and data layout be specified, but 

different phases of the user’s problem may require transformations between different distributed 

data structures. 

These deficiencies in the conventional user interface have prompted extensive discussion of 

alternative approaches for scalable parallel software libraries of the future. Possibilities include: 

1. Traditional function library (i.e., minimum possible change to the status quo in going 

from serial to  parallel environment). This will allow one to protect the programming 

investment that has been made. 

2. Reactive servers on the network. A user would be able to send a computational prob- 

lem to a server that was specialized in dealing with the problem. This fits well with 

the concepts of a networked, heterogeneous computing environment with various special- 

ized hardware resources (or even the heterogeneous partitioning of a single homogeneous 

parallel machine). 

3. General interactive environments like Matlab or Mathematica, perhaps with “expert” 

drivers (ie., knowledgebased systems). With the growing popularity of the many inte- 

grated packages based on this idea, this approach would provide an interactive, graphical 
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interface for specifying and solving scientific problems. Both the algorithms and data 

structures are hidden from the user, because the package itself is responsible for storing 

and retrieving the problem data in an efficient, distributed manner. In a heterogeneous 

networked environment, such interfaces could provide seamless access to computational 

engines that would be invoked selectively for different parts of the user‘s computation 

according to which machine is most appropriate for a particular subproblem. 

4. Domain-specific problem solving environments, such as those for structural analysis. En- 

vironments like Matlab and Mathematica have proven to be especially attractive for rapid 

prototyping of new algorithms and systems that may subsequently be implemented in a 

more customized manner for higher performance. 

5. Reusable templates (i.e., users adapt “source code” to their particular applications). A 

template is a description of a general algorithm rather than the executable object code or 

the source code more commonly found in a conventional software library. Nevertheless, 

although templates are general descriptions of key data structures, they offer whatever 

degree of customization the user may desire. 

Novel user interfaces that hide the complexity of scalable parallelism will require new con- 

cepts and mechanisms for representing scientific computational problems and for specifying how 

those problems relate to each other. Very high level languages and systems, perhaps graphi- 

cally based, not only would facilitate the use of mathematical software from the user’s point 

of view, but also would help to automate the determination of effective partitioning, mapping, 

granularity, data structures, etc. However, new concepts in problem specification and represen- 

tation may also require new mathematical research on the analytic, algebraic, and topological 

properties of problems (e.g., existence and uniqueness). 

We have already begun work on developing such templates for sparse matrix computations. 

Future work will focus on extending the use of templates to dense matrix computations. 

We hope the insight we gained from our work will influence future developers of hardware, 

compilers and systems software so that they provide tools to facilitate development of high 

quality portable numerical software. 

The EISPACK, LINPACK, and LAPACK linear algebra libraries are in the public domain, 

and are available from netlib. For example, for more information on how to obtain LAPACK, 

send the following one-line email message to netlibQorn1. gov: 

send index from lapack 

Information for EISPACK and LINPACK can be similarly obtained. We expect to make a 

preliminary version of the ScaLAPACK library available from netlib in 1993. 
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